

#### 50+ YEARS OF INNOVATION WITH PRESENCE IN EVERY SECTOR

LEADER IN DESIGN, DEVELOPMENT, MANUFACTURING AND AFTER SALES SUPPORT FOR AEROSPACE AND DEFENSE SYSTEMS SOLUTIONS





#### **EMBRAER: AN ENGINEERING POWERHOUSE**

THE ONLY OEM TO DEVELOP 21 DIFFERENT AIRCRAFT WITHIN 21 YEARS



#### INVESTOR >

#### **AIRCRAFT DELIVERIES**





2022 Outlook: 100 - 110





#### **EMBRAER'S ENVIRONMENTAL COMMITMENTS**

Scope 1

**Direct Emissions** 

Scope 2

**Indirect Emissions** 

Carbon Neutral Growth from 2022, and Carbon Neutrality by 2040

Regular usage of SAF from 2021 at Embraer's units

Reaching 25% of SAF in our operations by 2040

100% energy from Renewable Sources by 2030 Scope 3

**Product lifecycle emissions** 

Solutions to net zero carbon emissions in aviation by 2050

Aircraft 100% compatible with SAF by 2030

Collaborate to expand SAF production

Keep **improving the efficiency** of our current portfolio

**New technologies:** eVTOL, TPNG, Energia Family...

#### 18 YEARS OF WORKING WITH BIOFUELS AT EMBRAER

#### CHARTING THE PATH TOWARDS A GREEN AND SUSTAINABLE AVIATION INDUSTRY



EMB 202 Ipanema 1st Certified Biofuel aircraft in the world



Azul E195 Sugarcane-Ethanol blend



KLM 80 E190 flights using Camelina 25% SAF blend



Advanced biomass fuel production from sugarcane bagasse and forest residues

2004 2011 2012 2014 2016 2016-2019 2019-2022



Embraer, GE E170, Camelina oil



Brazil SAF Roadmap



Tested biorefinery of Soybean oil and Ethanol



#### E195-E2 COMPLETES 100% SAF FLIGHT TESTING

JUNE 2022: 70-MINUTE FLIGHT AT VERO BEACH REGIONAL AIRPORT – FL, USA.



Our industry can start reducing CO2 emissions now by:

- 1. Replacing legacy aircraft with more fuel-efficient new-generation solutions.
- 2. Scaling up SAF production.



The E2 is the most efficient single-aisle aircraft today, reducing CO2 emissions by 25%.



The E2 is currently certified to operate with SAF blended up to 50% with standard JetA/A1



### SUSTAINABLE AVIATION FUEL

# SAF (BIOFUELS PLUS PTL) WILL SUPPLY ~45% OF ALL 600MT COMMERCIAL AVIATION DEMAND BY 2050

On top of 200 Mt of BioJet, PtL Power to Liquid can supply more than 70 Mt of SAF by 2050<sup>[1][2]</sup>

PtL will require cheap electrical energy, cheap green H2 and cheap CO2 capture technologies



# REGIONAL AVIATION WILL PIONEER DISRUPTIVE TECHNOLOGIES

Fuel loaded<sup>[1]</sup>: 20,700 kg (equivalent to ~248 MWh)<sup>[2]</sup>

#### **Battery constraints**

| Battery Specific Energy <sup>[3]</sup><br>[Wh/kg] | Battery Weight<br>[kg] |
|---------------------------------------------------|------------------------|
| 200 (today)                                       | 540 000                |
| 500                                               | 216 000                |
| 1000                                              | 108 000                |

Hydrogen and Electricity will take a long time to be techno-economic viable solutions to decarbonize aviation.

#### **H2** constraints

| Density<br>[kg/m³] | Volume<br>[m³]     |
|--------------------|--------------------|
| Jet-A: 803         | 26                 |
| LH2: 71            | 134 <sup>[4]</sup> |

<sup>[1]</sup> Fuel Ref: ICAO Independent Expert Integrated technology goals assessment and review for engines and aircraft, 2019 - 165 pax + baggage, 3500nm range

<sup>[2]</sup> Assumes gas turbine thermal efficiency ~ 40% (cruise), fully electric conversion efficiency ~ 90%

<sup>[3]</sup> Pack level

<sup>[4]</sup> Volume utilization 80%

# This information is property of Embraer and cannot be used or reproduced without written permission

#### **TECHNOLOGY APPLICABILITY**

THE MISSION DEFINES THE ARCHITECTURE". CONSTANT LEARNING & EVOLUTION.



## LARGE SCALE DEPLOYMENT WILL BE DRIVEN BY ECOSYSTEM READINESS, NOT BY "CERTIFICABILITY"



Estimated certification readiness for applications between 19-50 PAX

Estimated ecosystem readiness (infrastructure, economics)

#### >

#### **EMBRAER'S SUSTAINABILITY PRODUCT ROADMAP**

DECARBONISING AVIATION THROUGH SAF, HYBRID, ELECTRIC AND HYDROGEN



#### **FAMILY CONCEPT**

SEATING FROM 70 TO 90 PASSENGERS





#### REAR MOUNTED ENGINE DESIGN BENEFITS

CLEAN SHEET DESIGN WITH EMBRAER DNA



#### **Rear Mounted Advantages**

- Jet bridge access
- Less cabin noise and vibration
- · More efficient wing
- · Shorter landing gear
- Future propulsion adaptability
- Less asymmetry for OEI







9-SEAT CAPACITY, 500 NM RANGE, EIS BEFORE 2030

50% less CO<sub>2</sub> with JetA1

90% less CO2 with SAF

60% lower External Noise



Parallel hybrid-electric propulsion, 100% SAF compatible

Piston engine optimised for cruise

Air-cooled electric motors streamlines thermal management system

# **ENERGIA ELECTRIC** 9-SEAT CAPACITY, 200 NM RANGE, EIS BY 2035 **Zero** CO<sub>2</sub> emissions 80% lower External Noise

Full electric propulsion

Aft contra-rotating propellers increase efficiency and reduce cabin noise

Ultra efficient aerodynamics with glider-inspired high aspect ratio wing and retractable landing gear

19-SEAT CAPACITY, 200 NM RANGE, EIS BY 2035

**Zero** CO<sub>2</sub> emissions

70% lower External Noise



ENERGI

35-50 SEATS CAPACITY, 350 TO 500 NM RANGE, EIS BY 2040

**Zero** CO2 emissions **60%** lower External Noise

**Dual Fuel Gas Turbine** Propulsion **100% Hydrogen energy** for short missions

**SAF or JetA option** for reserves and range extension

